I. Committee Member Introductions

II. IT Governance Overview (Brad Englert)

III. 2015-2016 Priorities – Discussion

IV. State of the Network (William Green)

V. 2015-2016 Longhorn Innovation Fund for Technology Winners – Update (Christy Tran, Pat Davis, Brad Englert)

VI. Chair Election – Mike Horn has been nominated for Chair. Please submit a nomination, if you would like to nominate someone (including yourself) to be Chair.
About IT Governance

The IT governance structure, under the auspices of the Chief Information Office (CIO), establishes the strategic, operational, and technical decision-making process required to ensure IT enables the University to excel in its mission. IT governance provides strategic leadership, establishes campus-wide IT priorities and policies, and is accountable and transparent to the University community. The following diagram illustrates the committee structure for IT governance at the University.

General Responsibilities of IT Governance Committees

The IT governance structure as a whole is responsible for the following:

- Establishing and communicating a campus-wide IT vision that supports the University mission and goals
- Establishing IT policies that support strategic, campus-wide IT priorities
- Establishing an overall IT budget structure for total IT spend on campus, starting with ITS
- Defining technical architecture and standards for the University
- Establishing best practices and tools for IT across campus

IT Governance Values

For IT governance to be successful, the committees must hold the following values:

- Transparency — Governance structure and process must be clear. How decisions are made and who has input rights and decision-making rights must be readily apparent to campus.
- Communication — Communication must occur into, out of, and across the committees and with campus.
- Accountability — Committees and task forces must be held accountable for delivering on their responsibilities. Clear escalation paths for issue resolution must be defined and outlined in charter documentation.
• Responsibility — Governance structure must focus on decision making and results more so than implementation and project management.
• Appropriate representation — Constituency groups across campus must be represented.
• Active support — Governance structure requires staff to support the process. Agenda setting, meeting logistics, issue tracking, and communication are all essential aspects of active support.

Governance Membership
Committee membership is designed to be representative of the campus population. Generally, members are selected to represent academic and research units of varying size, administrative units of varying size, and the student body.

Agenda Setting
Members of each committee propose agenda items to be discussed in their respective committees. Agenda items can also be suggested by anyone in the UT community by directly contacting a committee member, a committee chair or the CIO's office. Agenda items reflect campus IT priorities and emergent topics and are collected on a monthly basis and organized into a timeline for presentation that is determined by the committee chairs and finalized by the Chief Information Officer. To support transparency and full participation, topic presenters are asked to create a one-page brief of their topic. These briefs are compiled with the meeting agenda, administered to the committee for discussion, and published on the CIO website.

Projects
IT governance committees focus on setting direction, decision making, and ensuring accountability rather than implementation responsibilities or IT project management. Committees can, however, ask for and receive presentations and updates on projects from any project teams or steering committees as needed.

Funding Continuum
Projects are funded through four mechanisms; local funding, aggregate funding, aggregate funding with partial central support, and common good funding.

<table>
<thead>
<tr>
<th>Locally Funded</th>
<th>Aggregate Funding</th>
<th>Aggregate + Partial Central Subsidy</th>
<th>Common Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo 360</td>
<td>Media Site</td>
<td>Adobe Connect</td>
<td>Encryption Software</td>
</tr>
<tr>
<td>Canvas for Non-Traditional Students</td>
<td>MatLab</td>
<td></td>
<td>Canvas for Traditional Students</td>
</tr>
<tr>
<td>Computer Aided Design</td>
<td></td>
<td></td>
<td>CrashPlan for Faculty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UT Mail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Help Desk</td>
</tr>
</tbody>
</table>
State of the Network - Update

Overview
ITS has published its analysis of the campus network. While read internationally, the intent of the report is to help IT Governance manage this critical resource.

https://utexas.box.com/s/hh3lplbqoca66th2v820ougkmkexmx5v

Key Points
1. Building network grades dropped to 74 (C), from 78 two years ago
2. There is $8.9M in deferred Unit network investment ($3.2M increase from 2013)
3. Continued growth and increasing complexity may not be sustainable and need to be addressed

Summary Figures
- Services versus central staffing
- Cost metrics for the estimated $15.7M in annualized expenses
Grade distribution:

Overall Grade

Component Grade

- **Uplink**
- **Wired**
- **Wireless**
- **Closet**

Building Uplinks

- **Age**
- **Uplink Speeds**
 - **Switch**
 - **Single**
 - **Router**
 - **Dual**
 - **1G**
 - **10G**
 - **40G**
 - **100M**

<table>
<thead>
<tr>
<th>Gross SqFt</th>
<th>Headcount: Faculty & Staff FTE</th>
<th>Headcount: Students</th>
<th>Headcount: Total</th>
<th>Ethernet Ports</th>
<th>Devices: Unit Wired</th>
<th>Devices: General/Wireless</th>
<th>Devices: Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Costs</td>
<td>$ 0.40</td>
<td>$ 463.99</td>
<td>$ 182.96</td>
<td>$ 131.22</td>
<td>$ 52.70</td>
<td>$ 107.29</td>
<td>$ 46.25</td>
</tr>
<tr>
<td>Decentral Costs (in-building)</td>
<td>$ 0.27</td>
<td>$ 309.65</td>
<td>$ 122.10</td>
<td>$ 87.57</td>
<td>$ 35.17</td>
<td>$ 71.60</td>
<td>$ 30.87</td>
</tr>
<tr>
<td>Total</td>
<td>$ 0.66</td>
<td>$ 773.63</td>
<td>$ 305.05</td>
<td>$ 218.78</td>
<td>$ 87.87</td>
<td>$ 178.89</td>
<td>$ 77.12</td>
</tr>
</tbody>
</table>
- **Building wired networks**

- **Building wireless networks**
The following proposals were selected to receive LIFT funding for FY 2015-2016.

Interaction Anatomic System Dashboard (IASD)

Healthcare organizations and providers, at all levels, are currently being overwhelmed with large amounts of clinical information. Traditional medical education has handled these large amounts of data by viewing, analyzing and processing them within a limited and compartmentalized framework. This approach has its limitations in not allowing for consideration of the overall physiologic and pathologic processes as a part of a larger more complex body system. Clinical information is often presented in tabular form requiring the provider to mentally create and visualize the overall status of a larger complex body system. In situations involving multiple organ systems, data are often missed, misinterpreted or not evaluated in the context of more global pathologic processes or therapeutic interventions.

This innovative anatomic dashboard addresses this information-processing gap by allowing students and clinicians in healthcare to adopt a system approach to visualizing and processing clinical information. Clinical information will be converted to an anatomic heat map with the overall status of multiple organ systems on display. Additional information such as potential medication interactions can also be visualized.

Participants: Robert Ligon, Health Informatics & Health IT; Luis Francisco-Reveilla, PhD, Texas Advanced Computing Center; Y.W. Francis Lam, PharmD, Department of Pharmacology & UT HSC; Kavita Radhakrishnan, PhD, UT School of Nursing; Zacharia Varghese, MD, Health Informatics & Health IT

Scaling and Enhancing Location-Based Learning and Aesthetic Experiences

The College of Fine Arts offers “Visual and Performing Arts” (VAPA) courses required for all undergraduate majors on campus, resulting in very large class sizes. Some of these classes, including ARH 303, require visits to sites such as museums so that students can experience art and artifacts in situ. The Scaling and Enhancing Location-Based Learning and Aesthetic Experiences project investigates the use of iBeacons, low cost Bluetooth emitters, and mobile app technology to solve the problem of humans required to be docents for students in the Blanton Museum. The goal of the project is to know how much time each individual student spends in the museum each week, what the students sees in the museum, and the ability to push contextually appropriate content to the students when visiting. This will also provide valuable aggregate data to the instructors, allowing them to learn about the museum experience using the combined data of the entire class.

Participants: Dr. Paul Toprac, GAMMA Program; Koven Smith, Jack S Blanton Museum of Art; Dr. Bruce Pennycook, Center for Arts and Entertainment Technology (CAET); Matt O’Hair, Simulation and Game Applications (SAGA) Lab; and Jim Kerkoff, College of Fine Arts.
Simulated Training in Evidence-Based Practice for Stuttering (STEPS)

Among the 145,000+ practicing speech-language pathologists in the U.S., less than 1% feel competent to provide services to the nearly 20 million children and adults who stutter. The paucity of competent clinicians is attributed to the struggle to secure clinical experiences for undergraduate and graduate students across universities nationwide. The amount and diversity in age, gender, and severity of persons who stutter affiliated with the Michael and Tami Lang Stuttering Institute in the UT-Austin Moody College of Communication is unparalleled. Through access to the Simulated Training in Evidence-based Practice for Stuttering (STEPS) web application, students, professors, and practicing clinicians worldwide will have interactive exposure to our exceptional range of clinical scenarios. Thus, the STEPS program offers an innovative, highly needed resolution that will serve to end the struggle to obtain clinical competencies and further position our university as a leader in best practice for stuttering.

Participants: Courtney Byrd, Founding Director of Michael and Tami Lang Stuttering Institute, Moody College of Communications

Solar Energy Visualization System

The Solar Energy Visualization team will develop and field test an open-source software platform that provides data logging and interactive apps for solar education and engagement. This operating system will work with off-the-grid solar charging stations that collect the sun’s energy and store it in batteries, and then provide power for mobile electronics, LED lighting, touch screens, sounds systems and small electric vehicles. A system screen located on the UT Campus Solar Charging Station will graphically display information from the station such as total energy production, real-time loads from portable electronics plugged into the outlets, and equivalent CO₂ reduction. Our platform will be useful for the growing market of emergency charging stations with alarm systems and satellite communication capabilities. The system will address the need for a comprehensive energy operating systems to work with off-the-grid public solar charging stations on the UT campus and beyond.

Participants: Beth Ferguson, Visiting Research Scholar & Sol Design Lab Director; Jack Risley, Chair, Department of Art and History; Kevin Chandra, Cockrell School of Engineering; Karen Blaney, Office of Sustainability, Program Coordinator; Anna Wittenmyer, Cockrell School of Engineering; Delia Brownson, Biology Instructional Office, CNS

Virtual Reality for Journalists – An open-source virtual reality framework for experiential storytelling

Virtual reality represents an emerging frontier for journalists, with the potential to attract new audiences to in-depth news reporting through immersive storytelling. Our project is designed to develop an open-source framework that will enable journalism students and media professionals alike to publish virtual reality stories even if they do not have the software engineering expertise required of an application developer. The team consists of members from the Texas Advanced Computing Center’s visualization laboratory, the School of Journalism, and the UT 3D Program in the Department of Radio-Television-Film. The challenge is to work within an existing development framework, Unity3D, and create a platform that can function through managed plugins and be used with templates to host a variety of content such as 360-degree videos and image galleries.

Participants: Dr. Simon Su, research associate in the visualization laboratory of the Texas Advanced Computing Center, and Professor R.B. Brenner, director of the School of Journalism.